USN

Second Semester M.Tech. Degree Examination, June/July 2013 **Advanced Power Plant Cycles**

Time: 3 hrs. Max. Marks: 100

> Note: 1. Answer any FIVE full questions. 2. Use of steam tables and charts are permitted.

- With a neat circuit diagram, explain the "Carnotization of Rankine cycle" and also explain 1 with "T - S" diagram. (12 Marks)
 - b. A textile factory requires 10 t/h of steam for process of heating at 3 bar saturated and 1000 KW of power, for which a back pressure turbine of 70% internal efficiency is to be used. Find the steam condition required at inlet of the turbine. (08 Marks)
- 2 a. What are the flows of steam as the working fluid in a power cycle? (04 Marks)
 - Explain the characteristics of an ideal working fluid in a power cycle. (04 Marks)
 - c. A thermionic generator designed at its maximum thermal efficiency has the cathode and anode temperatures of 1250°C and 500°C, respectively. Determine: i) out put voltage ii) the current densities in the cathode and the anode iii) the power out put per unit area iv) the thermal efficiency. (12 Marks)
- Explain the coal gasification process, with a neat sketch. (08 Marks) 3
 - In an oil fired boiler the fuel had an analysis by mass: carbon 84%, hydrogen 10%, sulphur 3.2%, oxygen 1.6%, remainder incombustible. The analysis of dry flue gases by volume gave : combined $CO_2 + SO_2 - 15$.72%, $O_2 - 1\%$, there being no CO or SO_3 . Calculate per kg of fuel
 - i) Mass of air supplied
 - ii) Percentage air supplied
 - iii) Mass of dry flue gas formed
 - iv) Mass of water vapour formed.

(12 Marks)

- What are the advantages and disadvantages of pulverized coal firing?
- (08 Marks)

What is a stoker? What are the different types of stockers? b.

- (04 Marks)
- c. Fluidized bed is required to operate at atmospheric pressure and a bcd temperature of 850°C. The fuel has a calorific value of 25 MJ/kg. The stoichiometric air fuel ratio is 9.5 by mass and 20% excess air is used. The total fueling rate is 4.8 MW. The density of air at 850°C is 0.3145 kg/m³. Find the plat form area required if
 - i) The firing rate is 2 MW/m²
 - ii) The fluidizing velocity in 2.7 m/sec.

(08 Marks)

Mention the merits and demerits of fire – tube boiler. 5

- (08 Marks) (06 Marks)
- b. Explain the operation of a spray type <u>desuper</u> heater, with a neat sketch.
- A spray type desuper heater is supplied with water at 60°C. It is connected in a stream line carrying 200 t/h of steam at 35 bar. Calculate the amount of water that must be sprayed per hour to maintain steam at 400°C. when the boiler load causes steam to leave at 450°C.

6 a. Explain an indirect dry cooling tower where a direct contact spray type [open] condenser is used. (08 Marks)

OR

Explain an indirect dry cooling tower where ammonia is used as the coolant in the condenser.

(08 Marks)

- b. Water at 30°C flows into a cooling tower at the rate of 1.15 kg per kg air. Air enters the tower at the dbt of 20°C [dry bulb temperature] and a relative humidity of 60% and leaves it at a dbt of 28°C and 90% relative humidity. Make up water is supplied at 20°C. Determine:
 - i) The temperature of water leaving the tower
 - ii) The fraction of water evaporated
 - iii) The approach and range of the cooling lower.

The properties of air from psychometric chart are $twb_1 = 15.2$ °C, $twb_2 = 26.7$ °C, $h_1 = 43$ kJ/kg dry air $h_2 = 83.5$ kJ/kg dry air, $w_1 = 0.0088$ kg water vapour/ kg dry air $w_2 = 0.0213$ kg water vapour/ kg dry air. (12 Marks)

7 a. Sketch and explain the liquid metal fast breeder reactors.

(08 Marks)

- b. Sketch and explain the fusion power reactors and write significant advantages. (08 Marks)
- c. Calculate the mass defect and binding energy per nucleon of oxygen. Given, $m_p = 1.007277$ amu, $m_n = 1.008665$ amu, $m_c = 0.00055$ amu, atomic mass of oxygen $\approx 16 = 15.99491$ amu. (04 Marks)
- 8 a. Sketch and explain the Deriaz turbine.

(06 Marks)

b. Sketch and explain the bulb turbine and for which type of power plants it is suitable.

(06 Marks)

- c. A Slaton wheel has to be designed for the following specification. Power to be developed 6000 KW. Net head available = 300 m; speed = 550 rpm; ratio of jet diameter to wheel diameter = 1/10 Hydraulic efficiency = 0.85 assuming the velocity coefficient $C_v = 0.98$ and speed ratio $\phi = 0.46$, find
 - i) The number of jets
 - ii) Diameter of each jet
 - iii) Diameter of wheel
 - iv) The quality of water required.

(08 Marks)

* * * * *